GACIA ELECTRICAL APPLIANCE CO., LTD. Add: 545#Dongdajie,Beibaixiang,Baitawang Industrial Zone, Wenzhou Zhejiang,China E-mail:gacia@gacia.com.cn Http://www.gacia.com.cn ## S Product Information ### GACIA ## Pacemaker of circuit breakers ### Gacia Electrical Appliance Co., Ltd is an export-oriented company, focus on R&D, manufacturing, and sales of circuit breakers. Through 16 years of rapid growth, Gacia has 1700 employees, including 100 technical talents, and 3 manufacturing bases around China. Gacia's headquarter located in Wenzhou, the Shanghai campus focus on R&D and high-end manufacturing, and the Jiang xi campus provide OEM manufacturing services for customers all over the world. Meanwhile, Gacia's products export to over 100 countries and regions, and 80% of them are independent developed by Gacia. A majority of Gacia's products authenticated by many international professional certifications including German TUV, VDE certifications, Dutch KEMA certification and ISO 9001 international quality system. After more than a decade of development, Gacia adhere to business principle referring to "customer-centric, Altruism and Win-win". Besides, Gacia devoted to utilize innovation to drive production improvement, take advantage of lean production to upgrade products quality and committed to become the pacemaker of the global circuit breaker industrial. ### CONTENTS ### MCB | Description | 1-2 | |--------------------------|-----| | Main Technical Paramters | 3-4 | | Dimensions | 5-6 | ### **RCBO** | Description | / | |--------------------------|-------| | Main Technical Paramters | 8-9 | | Dimensions | 10-11 | ### **RCCB** | Description | 12 | |--------------------------|-------| | Main Technical Paramters | 13 | | Dimensions | 14 | | Accessories Series | 15-16 | ### Core Manufacturing Advantages GACIA - 1 Independent Research and develop hot runner mold which can drop 8 pcs shells one time. - 02 Injection closing unit device with automatic clamping and shaping process instead of traditional labour. - O3 High-speed Punch Press Machine & Auto Welding Machine. The integration of stamping and welding process could reduce components damage and increase the qualification rate significantly for the metal parts. - 1 Intelligent Manufacturing with quality auto monitoring pack and data interconnection pack could avoid artificial errors and improve product reliability. - Operating Mechanism plant and Tripper plant. The most important parts of RCD are produced by GACIA to insure quality warranty. # **Pacemaker** of circuit breakers In=40A CE **Quality Warranty:** Complete Manufacturing System for Components&Parts **Precise Manufacturing Process** Selecting High-class Raw Material **Strict Detecting System** Using Occasions: Residential, Commercial, Industrial, Tender, Projects Uses | * * * * * ### Your Contact Sales Here at GACIA Devin Ying Marketing Director Mobile:+86-13968793666 E-mail:devin@gacia.com.cn A long Head of Order Processing Mobile:+86-18757772155 E-mail:huangfeilong@gacia.com.cn South American Market Manager Mobile:+86-18757772168 E-mail:tina@gacia.com.cn European Market Manager Mobile:+86-18757772199 E-mail:jody@gacia.com.cn Simon South of Asia Market Manager Mobile:+86-18757772055 E-mail:bairuibo@gacia.com.cn Lee Middle East Market Manager Mobile:+86-18757772099 E-mail:lee@gacia.com.cn Ivy Middle Asian Market Manager Mobile:+86-18757772123 E-mail:lvy@gacia.com.cn Lulu ASEAN Market Mobile: +86-139687779753 E-mail: zhaolulu@gacia.com.cn A/F Hotline +86-577-62988823 E-mail:services@gacia.com.cn **Tech Support Hotline** +86-577-62988822 E-mail:tech@gacia.com.cn ### MCB | Model | | SB6NZ | SB6HS | SB6H | |---|-----------------|--------------------------------|-------------------------------|---| | IEC/EN 60898-1
IEC/EN 60947-2 | | GACIA
W GA
SE 13 | CACCA
SMITS 13
SMITS 13 | GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
CACIA
GACIA
CACIA
CACIA
CACIA
CACIA
CACIA
CACIA
C | | Poles | | 1P,1P+N,2P,3P,3P+N,4P | 1P,1P+N,2P,3P,3P+N,4P | 1P,1P+N,2P,3P,3P+N,4P | | Certification | | △(€ | △(€ | △(€ | | Electrical Specifiction | | 416 | 4(6 | 416 | | Rated current(A) | ln | 1-63 | 1-63 | 1-63 | | Rated frequency(Hz) | SIII | 50/60 | 50/60 | 50/60 | | Rated working voltage(V) | Ue | 1P:230/400~,2/3/4P:400~ | 1P:230/400~,2/3/4P:400~ | 1P:230/400~,2/3/4P:400 | | Rated working voltage(V) | Ui | 1P.230/400~,2/3/4P.400~
500 | 500 | 500 | | | | | 100000 | 6 | | Impulse withstand voltage(kV) | Uimp | 6 | 6 | 4.5 | | Rated short-circuit breaking capacity(KA) | lcn | 3 | 4.5 | 2000004 | | Instantaneous tripping type | | B,C,D | B,C,D | B,C,D | | Maximum working voltage | Umax | 440 | 440 | 440 | | Dielectric test voltage(kV) | | 2 | 2 | 2 | | Service life Mechanical Standard value | | 10000 | 10000 | 10000 | | (O-C) Electrical Standard value | | 4000 | 4000 | 4000 | | Contorl And Indication | | | | | | Shunt release(SHT) | | | | _ | | Undervoltage release(UVT) | | | | 1/2 | | Auxiliary contact(AUX) Alarm contact(ALT) | | | | | | | | | - | | | Contact position indicator Fault indication | | | | | | Connection And Installation | | | - | | | | | | | | | Ambient temperature(with daily average≤35 | | | -5℃ ~+40℃ | | | Protection degree ALL S | | | IP40 | | | | ection Terminal | 1 16 | IP20 | 1.16 | | Wire(mm²) | | 1-16 | 1-16 | 1-16 | | busbar(mm²) | | · C-LL- | 16 | | | Mounting | | Cable | Cable/Busbar | Cable/Busbar | | Pollution degree | .l .l | | 2 | | | Reference temperature for setting of therma | al element(C) | | 30 | | | Storage temperature(°C') | | | -25℃ ~+70℃ | | | Tightening torque | | | 3.0 | | | Connection | DD/DD/45) | | Top and Bottom | | | A | (2P/3P/4P) | | 17.5/35/52.5/70 | | | b 1. D(11) | /2P/3P/4P) | | 83/83/83 | | | | 2P/3P/4P) | | 67/67/67/67 | | | 1P | | | 0.1 | | | Weight(kg) | | | 0.2 | | | | | | | | | 3P 4P | | | 0.3
0.4 | | | nated short-circuit breaking co | pacity(tch) | 3 | 7.5 | 4.5 | |------------------------------------|---|-------|-----------------|--------------| | Instantaneous tripping type | | B,C,D | B,C,D | B,C,D | | Maximum working voltage | Umax | 440 | 440 | 440 | | Dielectric test voltage(kV) | | 2 | 2 | 2 | | Service life Mechanical Sta | andard value | 10000 | 10000 | 10000 | | (O-C) Electrical Sta | andard value | 4000 | 4000 | 4000 | | Contorl And Indication | | | | | | Shunt release(SHT) | | | | | | Undervoltage release(UVT) | | | | | | Auxiliary contact(AUX) | 31 | | | <u> </u> | | Alarm contact(ALT) | | | | | | Contact position indicator | | | | | | Fault indication | | | - | | | Connection And Installation | | | | | | Ambient temperature(with da | ily average≤35°C) | | -5℃ ~+40℃ | | | Dratastian dagge | ALL Sides | | IP40 | | | Protection degree | Connection Terminal | | IP20 | | | Wire(mm²) | | 1-16 | 1-16 | 1-16 | | busbar(mm²) | | | 16 | 16 | | Mounting | | Cable | Cable/Busbar | Cable/Busbar | | Pollution degree | | | 2 | | | Reference temperature for set | ting of thermal element(${}^{\circ}\!$ | | 30 | | | Storage temperature($^{\circ}$ C) | | | -25℃ ~+70℃ | | | Tightening torque | | | 3.0 | | | Connection | | | Top and Bottom | | | Dimensions(mm) | a(1P/2P/3P/4P) | | 17.5/35/52.5/70 | | | (WxHxL) | b(1P/2P/3P/4P) | | 83/83/83/83 | | | <u>,</u> Ç | c(1P/2P/3P/4P) | | 67/67/67/67 | | | | 1P | | 0.1 | | | \\\a:\mb*/\ca\ | 2P | | 0.2 | | | Weight(kg) | 3P | | 0.3 | | | | 4P | | 0.4 | | | Default □ Optional – No | | | | | | Default in Optional - No | one | | | | | Ĭ | | | | | | | | | | | | 1P,1P+N,2P,3P,3P+N,4P | 1P,1P+N,2P,3P,3P+N,4P | 1P,1P+N,2P,3P,3P+N,4P | 1P,2P,3P,4P | 1P+N | |-------------------------|--|----------------------------|--|----------------------------| | △ (€ | △ C€ | △ (€ | C€ | C€ | | | | | | 1 | | 1-63A | 1-63 | 1-63 | 63-125 | 6-32 | | 50/60 | 50/60 | 50/60 | 50/60 | 50/60 | | 1P:230/400~,2/3/4P:400~ | 1P:230/400~,2/3/4P:400~ | 1P:230/400~,2/3/4P:400~ | 1P:230/400~,2/3/4P:400~ | 230~ | | 500 | 500 | 500 | 500 | 400 | | 6 | 6 | 6 | 6 | 4 | | 6 | 4.5 | 6 | 6 | 3 | | B,C,D | B,C,D | B,C,D | (8-12ln) | B,C,D | | 440 | 440 | 440 | 440 | 240 | | 2 | 2 | 2 | 2 | 2 | | 10000 | 10000 | 10000 | 1500(In=63A 80A 100A)
1000(In=125A) | 10000 | | 4000 | 4000 | 4000 | 8500(In=63A 80A 100A)
7000(In=125A) | 4000 | | | | | | | | | | 0 | - | | | | 2 | | - | - <u> </u> | | | - | | 1 | 1 | | | | | | | | | | - | | | | | | | | | | | | -5℃ ~+40℃ | | | | | | IP40 | | | | | | IP20 | | | | 1-16 | 1-16 | 1-16 | 25-50 | 1-10 | | 16 | 16 | 16 | - | - | | Cable/Busbar | Cable/Busbar | Cable/Busbar | Cable | Cable | | | | 2 | 1.755005 | 10 5000000 | | | | 30 | | | | | | | | | | | | -25℃ ~+70℃ | | | | | 3.0 | -25℃ ~+70℃ | 3.5 | 2.5 | | | 3.0 | | 3.5 | 2.5 | | | | -25℃ ~+70℃ Top and Bottom | | | | | 17.5/35/52.5/70 | | 26.9/53.8/80.7/107.6 | 2.5
17.8
83 | | | 17.5/35/52.5/70
83/83/83/83 | | | 17.8
83 | | | 17.5/35/52.5/70
83/83/83/83
67/67/67/67 | | 26.9/53.8/80.7/107.6
83/83/83/83
78.5/78.5/78.5 | 17.8
83
77.5 | | | 17.5/35/52.5/70
83/83/83/83
67/67/67/67
0.1 | | 26.9/53.8/80.7/107.6
83/83/83/83 | 17.8
83 | | | 17.5/35/52.5/70
83/83/83/83
67/67/67/67 | | 26.9/53.8/80.7/107.6
83/83/83/83
78.5/78.5/78.5/78.5
0.15 | 17.8
83
77.5
0.11 | ### **MCB** ### **Normal Working Conditions and Installation Conditions:** - ◆ Ambient Temperature: -5°C ~+40°C, it's average over a period of 24 hours does not exceed +35°C. - → Height above Sea Level: ≤ 2000m. - Atmospheric Condition: - When the maximum temperature is +40%, the relative humidity of the air is not exceed 50%, and it has higher humidity at lower temperature. The maximum monthly relative humidity is 90%, and the lowest temperature is +20%. Additionally, a frost might be present, with the temperature change. - Pollution Degree: 2 - Installation Conditions: - Installation Category and Type: Installation category is II or III, and the installation type adopts standard steel guide rail installation (TH35-7.5). - The circuit breaker shall be installed vertically, and the upward position of the handle shall be connected to the power. - The installation should be free from obvious impact and vibration, corrosive and explosive gases. #### **Characteristics Curve** ### **MCB** ### **Time-current operating characteristics** | Test | Туре | Test current | Inital condition | Limits of tripping or non-tripping time | Result to be obtained | Remarks | |------|-------------|---|-------------------|---|-----------------------|--| | a | B, C, D | 1,13 / _n | Cold ^a | $t \le 1h(for I_n \le 63A)$ | No tripping | | | | | | | $t \le 2h(for /_n > 63A)$ | | | | b | B, C, D | 1,45 / _n | Immediately | $t < 1h(for /_n \le 63A)$ | Tripping | Current steadily increased within 5 s | | | | | following test a | $t < 2h(for /_n > 63A)$ | | WICHIII 5 S | | С | B, C, D | 2,55 / _n | Cold ^a | 1s < t < 60s
(for $I_n \le 32A$)
1s < t < 120s
(for $I_n > 32A$) | Tripping | | | d | B
C
D | 3 / _n
5 / _n
10 / _n | Cold ^a | $t \le 0,1s$ | No Tripping | Current established by closing an auxiliary switch | | е | B
C
D | 5 / _n
10 / _n
20 / _n ^b | Cold ^a | t < 0,1s | Tripping | Current established by closing an auxiliary switch | ^a The term "cold" means without previous loading, at the reference calibration temperature. ^b 50 /n for special cases. NOTE An additional test, intermediate between c and d, is under consideration for circuit-breakers of type D. #### **Dimensions** SB6NZ/SB6HS/SB6H/SB6L/SB6HC/SB6LC ### ◆ SG6H 1P 2P 3P 3 0 (1) 0 0 0 (1) 1 1 0 SN6N MAX72 1P+N 61.3 -44.5 17.8 •• ### **RCBO** | Model | | | SL6N | SF6H | SH6H | |---|---|---------|--|---|---| | IEC/EN 61009-1 | | | GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA
GACIA | CACIA
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN
SIGN | GACIA
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG | | Poles | 117 | | 1P+N | 1P+N, 2P, 3P+N4P | 1P+N, 2P, 3P+N4P | | Certification | | | | | | | Electrical Specifiction | | | | | | | Rated current(A) | In | 1 | 6-32A | 6-32A | 63-125A | | Rated frequency(Hz) | | | 50/60 | 50/60 | 50/60 | | Rated working voltage(V) | U | е | 230~ | 1P+N/2P:230~,3/3P+N/4P:400~ | 1P+N/2P:230~,3/3P+N/4P:400 | | Rated insulated voltage(V) | U | i | 400 | 400 | 400 | | Rated impulse withstand vo | the second second | imp | 4 | 4 | 4 | | Rated short-circuit breaking | | | 3 | 4.5 | 6 | | Rated Residual current(mA | | \n | 30,100,300 | 30,100,300 | 30,100,300 | | Thermo-magnetic release of | | | B,C,D | B,C,D | B,C,D | | Residual current protectio | | | 2,0,0 | Electronic | 5,5,5 | | Residual current working | | | | AC | | | Rated residual making and | | n/l∆m | 500A | 500(In≤50A),630(In=63A) | 10ln | | Dielectric test voltage(kV) | , — ATA S AS | | | 2.5 | | | | Mechanical Standar | d value | 10000 | 10000 | 8500(In=63A 80A 100A) | | SORVICO LITO | iviectialical Standar | | | | | | Service life
(O-C) | Electrical Standard | | 4000 | 4000 | | | | | | 4000 | 4000 | 1500(In=63A 80A 100A) | | (O-C) Control And Indication | | | 4000 | 4000 | | | (O-C) Control And Indication Shunt release(SHT) | Electrical Standard v | | 4000 | | | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT | Electrical Standard v | | - | | | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) | Electrical Standard v | | | - | | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) | Electrical Standard v | | | - | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator | Electrical Standard v | | | - | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication | Electrical Standard v | | | - | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation | Electrical Standard v | | | - | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with o | Electrical Standard v | | | - | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with o | Electrical Standard v | | | -
-
-
-
-
-5℃ ~+40℃ | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of | Electrical Standard (| | | -
-
-
-
-
-5℃ ~+40℃
IP40 | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with o | Electrical Standard (| | - | -
-
-
-
-
-
-
-5℃ ~+40℃
IP40
IP20 | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of the protection degree) Wire(mm²) busbar(mm²) | Electrical Standard (| | 1-6 | -
-
-
-
-
-
-5°C ~+40°C
IP40
IP20
1-16 | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting | Electrical Standard (| | -
-
-
1-6
16 | | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree | Electrical Standard (T) daily average≤35℃) ALL sides Connection terminal | value | -
-
-
1-6
16 | | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree Reference temperature for | Electrical Standard (T) daily average≤35℃) ALL sides Connection terminal | value | -
-
-
1-6
16 | | 1500(In=63A 80A 100A) | | (O-C) Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree Reference temperature(°C) | Electrical Standard (T) daily average≤35℃) ALL sides Connection terminal | value | -
-
-
1-6
16 | | 1500(In=63A 80A 100A) | | Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree Reference temperature for s Storage temperature(°C) | Electrical Standard (T) daily average≤35℃) ALL sides Connection terminal | value | 1-6
16
Cable/Busbar | | 1-35
- Cable | | Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree Reference temperature for s Storage temperature(°C) Tightening torque Connection | Electrical Standard (T) daily average≤35℃) ALL sides Connection terminal | value | 1-6
16
Cable/Busbar | | 1-35
- Cable | | Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree Reference temperature for storage temperature(°C) Tightening torque Connection | Electrical Standard v T) Idaily average≤35℃) ALL sides Connection terminal setting of thermal element | value | 1-6
16
Cable/Busbar | | 1-35
 | | Control And Indication Shunt release(SHT) Undervoltage release(UVT Auxiliary contact(AUX) Alarm contact(ALT) Contact position indicator Fault indication Connection And Installation Ambient temperature(with of Protection degree Wire(mm²) busbar(mm²) Mounting Pollution degree Reference temperature for storage temperature(°C) Tightening torque Connection | Electrical Standard v T) Idaily average≤35℃) ALL sides Connection terminal setting of thermal element a(1P+N) | value | 1-6
16
Cable/Busbar | | 1-35
 | [■] Default □ Optional - None ### Normal Working Conditions and Installation Conditions - ◆ Ambient Temperature: -5℃ ~+40℃. - ♦ Height above Sea Level: ≤ 2000m - ◆ Installation Category: II, III - Pollution Degree: 2 - ♦ The installation type adopts standard steel guide rail installation (TH35-7.5). - ◆ Installation Conditions: The external magnetic field of the installation site shall not exceed 5 times of the earth's magnetic field in any direction. -When over voltage residual current moves, the circuit breaker shall be installed vertically, and the upward position of the handle shall be -connected to the power. The installation should be free from obvious impact and vibration. - Mode of Connection: Use screws to press the wiring. ### **RCBO** #### **Characteristics Curve** ### **Dimensions** ### **RCCB** | Model | | SR6HE | SR6HM | |-----------------------------------|---------------------------|--|--| | IEC/EN 61008-1 | | GACIA TO STATE OF THE | GACIA TO THE PARTY OF PART | | Poles | 7. | 2P, 4P | 2P, 4P | | Certification | | KEMA CE | Kena CE | | Electrical Specifiction | | | | | Rated current(A) | ln | 16-63A | 16-63A | | Rated working voltage(V) | Ue | 2P:230,4P:400 | 2P:230,4P:400 | | Rated insulated voltage(V) | Ui | 500 | 500 | | Impulse withstand voltage(k\ | /) Uimp | 6 | 6 | | Rated conditional short-circuit b | reaking capacity(KA) Ics | 6 | 6 | | Rated Residual current(mA) | IΔn | 10,30,100,300 | 10,30,100,300 | | Rated Residual making and b | reaking capacity I∆m | 500(≤50A),630(63A) | 500(≤50A),630(63A) | | Residual current working typ | e | AC,AC+S,A | AC,A | | Residual current Protection ty | уре | Electronic | Electromagnetic | | Dielectric test voltage(kV) | | | 2.5 | | Service life Mechanical | Standard value | | 4000 | | (O-C) Electrical | Standard value | | 2000 | | Control And Indication | | | | | Shunt release(SHT) | | | | | Undervoltage release(UVT) | | | - | | Auxiliary contact(AUX) | | | | | Alarm contact(ALT) | | | - | | Contact position indicator | | | | | Fault indication | | | - | | Connection And Installation | | | | | Ambient temperature(with d | aily average≤35℃) | | -5℃ ~+40℃ | | 2 | ALL sides | | IP40 | | Protection degree | Connection terminal | | IP20 | | Wire(mm²) | | | 16 | | busbar(mm²) | | | 25 | | Mounting | | | Cable/Busbar | | Reference temperature for se | etting of thermal element | | 30 | | Pollution degree | | | 2 | | Storage temperature (°C) | | | -25℃ ~+70℃ | | Connection | | Тор | Top and bottom | | Dimensions(mm) | a(2P/4P) | | 35/70 | | (WxHxL) | b(2P/4P) | | 80/80 | | | c(2P/4P) | | 77.5/77.5 | | 1144 | 2P | | 0.17 | | Weight(kg) | 4P | | 0.34 | | | | | V.JT | [■] Default □ Optional - None ### **RCCB** ### **Normal Working Conditions and Installation Conditions** - ◆ Ambient Temperature: -5°C ~+40°C . - ◆ Height above Sea Level: ≤ 2000m - Installation Category: II, III - Pollution Degree: 2 - ♦ The installation type adopts standard steel guide rail installation (TH35-7.5). - ◆ Installation Conditions: The external magnetic field of the installation site shall not exceed 5 times of the earth's magnetic field in -any direction. When over voltage residual current moves, the circuit breaker shall be installed vertically, and the upward position of -the handle shall be connected to the power. The installation should be free from obvious impact and vibration. - ◆ Mode of Connection: Use screws to press the wiring. #### **Dimensions** ### **ACCESSORIES** ### The combination of electrical accessory devices ### Remote indicating accessories #### AUX auxlilary contact Function:indicate the open and close state of circuit breaker. Application: distant indication of circuit breaker state. #### **ALT** Alarming contact trips. Function:send signal at the time of fault tripping of circuit breaker. On the front panel, there is mechanical indication which can indicate fault tripping. #### AUX+ALT/AUX double switching contact Function: two switching contact can Indicate the "open" or "closed" state of circuit breaker with OFF. Indicate the failure trip of circuit breaker. Application: two loops Up :AUX Down: ALT and AUX Select functions with the rotating switch on the right. Selecting function indicated on the front cover of the device. Be a red indicator on the front cover of the pevice when failure ### **Tripping accessories** Red tripping indicator on the front cover of the device. SHT shunt release, SHTA shunt release+aux Function: when it gets signal, it triggers the circuit breaker to SHTA: it includes a condition indication contact to indicate the on/off state of circuit breakers. Application: distant control can achieve emergency breaking. Distant indication of circuit breaker state. #### UVT under-voltage release Function: when power voltage lowers(35%~70%Un), it makes circuit breaker trip; when power is not supplied normally, it prevents circuit breaker from reconnecting to the circuit. 0.2S time delay prevents the temporary lowering of voltage from causing mistrip. Application: preventing machine from restarting without control signal, ensuring safety. #### OVT over-voltage release Function: monitor voltage between phase line and neutral line. When voltage rises(for example, neutral line is broken), it triggers circuit breakers to trip. Rated tripping voltage range:280vac+/-5%. Application: preventing over-voltage from damaging circuit and equipement. #### OUVT Over&under-voltage release Function: it has function of over-voltage release, and function of making circuit breaker trip when power voltage lowers. Rated tripping voltage range:280vac+/-5%. Rated under-voltage tripping range: 55 ~160v. Application: preventing over-voltage and under-voltage from damaging circuit and equipment. | odel | | Voltage
Ue | | Working
current | 3 | Contact
Number | |----------------------------------|-----|---------------|-----|--------------------|------------|-------------------| | ixiliary conta | :t | | | | | | | 11 | AC | 230/400V | | 230V AC | 6A | 1NO/NC | | + | DC | 120V | | 400V AC | 3A | | | 12 14 | | | | 120V DC | 1A | | | rm contact | | | | | | | | 91 | AC | 230/400V | | 230V AC | 6A | 1NO/NC | | 1 | DC | 120V | | 400V AC | 3A | | | 94 92 | | | | 120V DC | 1A | | | nunt release | AC | 120/400V | 48V | 12/24V | - | - | | IT | DC | 120V | 48V | 12/24V | - | | | G2 C1
(U+) (N-) | | | | | - | | | unt release+ | Aux | | | | | | | U> | AC | 120/400V | 48V | 12/24V | 230V AC 6A | 1NO/NC | | TYT | DC | 120V | 48V | 12/24V | 400V AC 3A | | | 14 12 C2 C1
11
(L/+) (N/-) | | | | | 120V DC 1A | | | del | | Voltage
Ue | | Working
current | Contact
Number | |----------------------|----------|---------------------|------------|--------------------|-------------------| | der-Volatage | e Releas | e | | | | | U- | AC | 230V | 230V | i.e. | - | | ľ | DC | - | - | - | | | D1 D2
(L/+) (NI-) | | | | - | | | verVolatage F | | 2301/ | 2301/ | | | | | | 230V | 230V | - | - | | | AC | | 502000 | | | | Uss | DC | | - | _ | | | U» | C20100 | | 1 See 2000 | | | | ver&under-vo | DC | 3.5 | 1 See 2000 | | | | N E | DC | 3.5 | 1 See 2000 | | - | | N E | DC | -
elease
230V | - | - | |